Vulnerabilities (CVE)

Filtered by CWE-416
Total 6480 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-43491 1 Microsoft 1 Windows 10 1507 2024-09-26 N/A 9.8 CRITICAL
Microsoft is aware of a vulnerability in Servicing Stack that has rolled back the fixes for some vulnerabilities affecting Optional Components on Windows 10, version 1507 (initial version released July 2015). This means that an attacker could exploit these previously mitigated vulnerabilities on Windows 10, version 1507 (Windows 10 Enterprise 2015 LTSB and Windows 10 IoT Enterprise 2015 LTSB) systems that have installed the Windows security update released on March 12, 2024—KB5035858 (OS Build 10240.20526) or other updates released until August 2024. All later versions of Windows 10 are not impacted by this vulnerability. This servicing stack vulnerability is addressed by installing the September 2024 Servicing stack update (SSU KB5043936) AND the September 2024 Windows security update (KB5043083), in that order. Note: Windows 10, version 1507 reached the end of support (EOS) on May 9, 2017 for devices running the Pro, Home, Enterprise, Education, and Enterprise IoT editions. Only Windows 10 Enterprise 2015 LTSB and Windows 10 IoT Enterprise 2015 LTSB editions are still under support.
CVE-2024-31960 1 Samsung 4 Exynos 1480, Exynos 1480 Firmware, Exynos 2400 and 1 more 2024-09-24 N/A 7.8 HIGH
An issue was discovered in Samsung Mobile Processor Exynos 1480, Exynos 2400. The xclipse amdgpu driver has a reference count bug. This can lead to a use after free.
CVE-2024-8947 1 Micropython 1 Micropython 2024-09-24 5.1 MEDIUM 5.6 MEDIUM
A vulnerability was found in MicroPython 1.22.2. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file py/objarray.c. The manipulation leads to use after free. The attack can be launched remotely. The complexity of an attack is rather high. The exploitation appears to be difficult. Upgrading to version 1.23.0 is able to address this issue. The identifier of the patch is 4bed614e707c0644c06e117f848fa12605c711cd. It is recommended to upgrade the affected component. In micropython objarray component, when a bytes object is resized and copied into itself, it may reference memory that has already been freed.
CVE-2024-26186 1 Microsoft 5 Sql 2016 Azure Connect Feature Pack, Sql Server 2016, Sql Server 2017 and 2 more 2024-09-23 N/A 8.8 HIGH
Microsoft SQL Server Native Scoring Remote Code Execution Vulnerability
CVE-2024-46762 1 Linux 1 Linux Kernel 2024-09-23 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds.
CVE-2024-46796 1 Linux 1 Linux Kernel 2024-09-20 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix double put of @cfile in smb2_set_path_size() If smb2_compound_op() is called with a valid @cfile and returned -EINVAL, we need to call cifs_get_writable_path() before retrying it as the reference of @cfile was already dropped by previous call. This fixes the following KASAN splat when running fstests generic/013 against Windows Server 2022: CIFS: Attempting to mount //w22-fs0/scratch run fstests generic/013 at 2024-09-02 19:48:59 ================================================================== BUG: KASAN: slab-use-after-free in detach_if_pending+0xab/0x200 Write of size 8 at addr ffff88811f1a3730 by task kworker/3:2/176 CPU: 3 UID: 0 PID: 176 Comm: kworker/3:2 Not tainted 6.11.0-rc6 #2 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 Workqueue: cifsoplockd cifs_oplock_break [cifs] Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ? detach_if_pending+0xab/0x200 print_report+0x156/0x4d9 ? detach_if_pending+0xab/0x200 ? __virt_addr_valid+0x145/0x300 ? __phys_addr+0x46/0x90 ? detach_if_pending+0xab/0x200 kasan_report+0xda/0x110 ? detach_if_pending+0xab/0x200 detach_if_pending+0xab/0x200 timer_delete+0x96/0xe0 ? __pfx_timer_delete+0x10/0x10 ? rcu_is_watching+0x20/0x50 try_to_grab_pending+0x46/0x3b0 __cancel_work+0x89/0x1b0 ? __pfx___cancel_work+0x10/0x10 ? kasan_save_track+0x14/0x30 cifs_close_deferred_file+0x110/0x2c0 [cifs] ? __pfx_cifs_close_deferred_file+0x10/0x10 [cifs] ? __pfx_down_read+0x10/0x10 cifs_oplock_break+0x4c1/0xa50 [cifs] ? __pfx_cifs_oplock_break+0x10/0x10 [cifs] ? lock_is_held_type+0x85/0xf0 ? mark_held_locks+0x1a/0x90 process_one_work+0x4c6/0x9f0 ? find_held_lock+0x8a/0xa0 ? __pfx_process_one_work+0x10/0x10 ? lock_acquired+0x220/0x550 ? __list_add_valid_or_report+0x37/0x100 worker_thread+0x2e4/0x570 ? __kthread_parkme+0xd1/0xf0 ? __pfx_worker_thread+0x10/0x10 kthread+0x17f/0x1c0 ? kthread+0xda/0x1c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1118: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 cifs_new_fileinfo+0xc8/0x9d0 [cifs] cifs_atomic_open+0x467/0x770 [cifs] lookup_open.isra.0+0x665/0x8b0 path_openat+0x4c3/0x1380 do_filp_open+0x167/0x270 do_sys_openat2+0x129/0x160 __x64_sys_creat+0xad/0xe0 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 83: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x70 poison_slab_object+0xe9/0x160 __kasan_slab_free+0x32/0x50 kfree+0xf2/0x300 process_one_work+0x4c6/0x9f0 worker_thread+0x2e4/0x570 kthread+0x17f/0x1c0 ret_from_fork+0x31/0x60 ret_from_fork_asm+0x1a/0x30 Last potentially related work creation: kasan_save_stack+0x30/0x50 __kasan_record_aux_stack+0xad/0xc0 insert_work+0x29/0xe0 __queue_work+0x5ea/0x760 queue_work_on+0x6d/0x90 _cifsFileInfo_put+0x3f6/0x770 [cifs] smb2_compound_op+0x911/0x3940 [cifs] smb2_set_path_size+0x228/0x270 [cifs] cifs_set_file_size+0x197/0x460 [cifs] cifs_setattr+0xd9c/0x14b0 [cifs] notify_change+0x4e3/0x740 do_truncate+0xfa/0x180 vfs_truncate+0x195/0x200 __x64_sys_truncate+0x109/0x150 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2024-41869 3 Adobe, Apple, Microsoft 6 Acrobat, Acrobat Dc, Acrobat Reader and 3 more 2024-09-19 N/A 7.8 HIGH
Acrobat Reader versions 24.002.21005, 24.001.30159, 20.005.30655, 24.003.20054 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2024-38119 1 Microsoft 13 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 10 more 2024-09-17 N/A 7.5 HIGH
Windows Network Address Translation (NAT) Remote Code Execution Vulnerability
CVE-2024-38235 1 Microsoft 13 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 10 more 2024-09-17 N/A 6.5 MEDIUM
Windows Hyper-V Denial of Service Vulnerability
CVE-2024-38248 1 Microsoft 8 Windows 10 21h2, Windows 10 22h2, Windows 11 21h2 and 5 more 2024-09-17 N/A 7.0 HIGH
Windows Storage Elevation of Privilege Vulnerability
CVE-2024-38249 1 Microsoft 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more 2024-09-17 N/A 7.8 HIGH
Windows Graphics Component Elevation of Privilege Vulnerability
CVE-2024-43463 1 Microsoft 4 365 Apps, Office, Office Long Term Servicing Channel and 1 more 2024-09-17 N/A 7.8 HIGH
Microsoft Office Visio Remote Code Execution Vulnerability
CVE-2024-39385 3 Adobe, Apple, Microsoft 3 Premiere Pro, Macos, Windows 2024-09-16 N/A 5.5 MEDIUM
Premiere Pro versions 24.5, 23.6.8 and earlier are affected by a Use After Free vulnerability that could lead to disclosure of sensitive memory. An attacker could leverage this vulnerability to bypass mitigations such as ASLR. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2024-46687 1 Linux 1 Linux Kernel 2024-09-14 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix a use-after-free when hitting errors inside btrfs_submit_chunk() [BUG] There is an internal report that KASAN is reporting use-after-free, with the following backtrace: BUG: KASAN: slab-use-after-free in btrfs_check_read_bio+0xa68/0xb70 [btrfs] Read of size 4 at addr ffff8881117cec28 by task kworker/u16:2/45 CPU: 1 UID: 0 PID: 45 Comm: kworker/u16:2 Not tainted 6.11.0-rc2-next-20240805-default+ #76 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Workqueue: btrfs-endio btrfs_end_bio_work [btrfs] Call Trace: dump_stack_lvl+0x61/0x80 print_address_description.constprop.0+0x5e/0x2f0 print_report+0x118/0x216 kasan_report+0x11d/0x1f0 btrfs_check_read_bio+0xa68/0xb70 [btrfs] process_one_work+0xce0/0x12a0 worker_thread+0x717/0x1250 kthread+0x2e3/0x3c0 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x11/0x20 Allocated by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x7d/0x80 kmem_cache_alloc_noprof+0x16e/0x3e0 mempool_alloc_noprof+0x12e/0x310 bio_alloc_bioset+0x3f0/0x7a0 btrfs_bio_alloc+0x2e/0x50 [btrfs] submit_extent_page+0x4d1/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Freed by task 20917: kasan_save_stack+0x37/0x60 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x50 __kasan_slab_free+0x4b/0x60 kmem_cache_free+0x214/0x5d0 bio_free+0xed/0x180 end_bbio_data_read+0x1cc/0x580 [btrfs] btrfs_submit_chunk+0x98d/0x1880 [btrfs] btrfs_submit_bio+0x33/0x70 [btrfs] submit_one_bio+0xd4/0x130 [btrfs] submit_extent_page+0x3ea/0xdb0 [btrfs] btrfs_do_readpage+0x8b4/0x12a0 [btrfs] btrfs_readahead+0x29a/0x430 [btrfs] read_pages+0x1a7/0xc60 page_cache_ra_unbounded+0x2ad/0x560 filemap_get_pages+0x629/0xa20 filemap_read+0x335/0xbf0 vfs_read+0x790/0xcb0 ksys_read+0xfd/0x1d0 do_syscall_64+0x6d/0x140 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [CAUSE] Although I cannot reproduce the error, the report itself is good enough to pin down the cause. The call trace is the regular endio workqueue context, but the free-by-task trace is showing that during btrfs_submit_chunk() we already hit a critical error, and is calling btrfs_bio_end_io() to error out. And the original endio function called bio_put() to free the whole bio. This means a double freeing thus causing use-after-free, e.g.: 1. Enter btrfs_submit_bio() with a read bio The read bio length is 128K, crossing two 64K stripes. 2. The first run of btrfs_submit_chunk() 2.1 Call btrfs_map_block(), which returns 64K 2.2 Call btrfs_split_bio() Now there are two bios, one referring to the first 64K, the other referring to the second 64K. 2.3 The first half is submitted. 3. The second run of btrfs_submit_chunk() 3.1 Call btrfs_map_block(), which by somehow failed Now we call btrfs_bio_end_io() to handle the error 3.2 btrfs_bio_end_io() calls the original endio function Which is end_bbio_data_read(), and it calls bio_put() for the original bio. Now the original bio is freed. 4. The submitted first 64K bio finished Now we call into btrfs_check_read_bio() and tries to advance the bio iter. But since the original bio (thus its iter) is already freed, we trigger the above use-after free. And even if the memory is not poisoned/corrupted, we will later call the original endio function, causing a double freeing. [FIX] Instead of calling btrfs_bio_end_io(), call btrfs_orig_bbio_end_io(), which has the extra check on split bios and do the pr ---truncated---
CVE-2024-43758 3 Adobe, Apple, Microsoft 3 Illustrator, Macos, Windows 2024-09-13 N/A 7.8 HIGH
Illustrator versions 28.6, 27.9.5 and earlier are affected by a Use After Free vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2024-46696 1 Linux 1 Linux Kernel 2024-09-13 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix potential UAF in nfsd4_cb_getattr_release Once we drop the delegation reference, the fields embedded in it are no longer safe to access. Do that last.
CVE-2024-46683 1 Linux 1 Linux Kernel 2024-09-13 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: drm/xe: prevent UAF around preempt fence The fence lock is part of the queue, therefore in the current design anything locking the fence should then also hold a ref to the queue to prevent the queue from being freed. However, currently it looks like we signal the fence and then drop the queue ref, but if something is waiting on the fence, the waiter is kicked to wake up at some later point, where upon waking up it first grabs the lock before checking the fence state. But if we have already dropped the queue ref, then the lock might already be freed as part of the queue, leading to uaf. To prevent this, move the fence lock into the fence itself so we don't run into lifetime issues. Alternative might be to have device level lock, or only release the queue in the fence release callback, however that might require pushing to another worker to avoid locking issues. References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2454 References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2342 References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2020 (cherry picked from commit 7116c35aacedc38be6d15bd21b2fc936eed0008b)
CVE-2024-45013 1 Linux 1 Linux Kernel 2024-09-13 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: nvme: move stopping keep-alive into nvme_uninit_ctrl() Commit 4733b65d82bd ("nvme: start keep-alive after admin queue setup") moves starting keep-alive from nvme_start_ctrl() into nvme_init_ctrl_finish(), but don't move stopping keep-alive into nvme_uninit_ctrl(), so keep-alive work can be started and keep pending after failing to start controller, finally use-after-free is triggered if nvme host driver is unloaded. This patch fixes kernel panic when running nvme/004 in case that connection failure is triggered, by moving stopping keep-alive into nvme_uninit_ctrl(). This way is reasonable because keep-alive is now started in nvme_init_ctrl_finish().
CVE-2024-38252 1 Microsoft 12 Windows 10 1607, Windows 10 1809, Windows 10 21h1 and 9 more 2024-09-13 N/A 7.8 HIGH
Windows Win32 Kernel Subsystem Elevation of Privilege Vulnerability
CVE-2024-38253 1 Microsoft 5 Windows 11 21h2, Windows 11 22h2, Windows 11 23h2 and 2 more 2024-09-13 N/A 7.8 HIGH
Windows Win32 Kernel Subsystem Elevation of Privilege Vulnerability