Total
34460 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2025-38451 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: md/md-bitmap: fix GPF in bitmap_get_stats() The commit message of commit 6ec1f0239485 ("md/md-bitmap: fix stats collection for external bitmaps") states: Remove the external bitmap check as the statistics should be available regardless of bitmap storage location. Return -EINVAL only for invalid bitmap with no storage (neither in superblock nor in external file). But, the code does not adhere to the above, as it does only check for a valid super-block for "internal" bitmaps. Hence, we observe: Oops: GPF, probably for non-canonical address 0x1cd66f1f40000028 RIP: 0010:bitmap_get_stats+0x45/0xd0 Call Trace: seq_read_iter+0x2b9/0x46a seq_read+0x12f/0x180 proc_reg_read+0x57/0xb0 vfs_read+0xf6/0x380 ksys_read+0x6d/0xf0 do_syscall_64+0x8c/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e We fix this by checking the existence of a super-block for both the internal and external case. | |||||
| CVE-2025-38457 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net/sched: Abort __tc_modify_qdisc if parent class does not exist Lion's patch [1] revealed an ancient bug in the qdisc API. Whenever a user creates/modifies a qdisc specifying as a parent another qdisc, the qdisc API will, during grafting, detect that the user is not trying to attach to a class and reject. However grafting is performed after qdisc_create (and thus the qdiscs' init callback) is executed. In qdiscs that eventually call qdisc_tree_reduce_backlog during init or change (such as fq, hhf, choke, etc), an issue arises. For example, executing the following commands: sudo tc qdisc add dev lo root handle a: htb default 2 sudo tc qdisc add dev lo parent a: handle beef fq Qdiscs such as fq, hhf, choke, etc unconditionally invoke qdisc_tree_reduce_backlog() in their control path init() or change() which then causes a failure to find the child class; however, that does not stop the unconditional invocation of the assumed child qdisc's qlen_notify with a null class. All these qdiscs make the assumption that class is non-null. The solution is ensure that qdisc_leaf() which looks up the parent class, and is invoked prior to qdisc_create(), should return failure on not finding the class. In this patch, we leverage qdisc_leaf to return ERR_PTRs whenever the parentid doesn't correspond to a class, so that we can detect it earlier on and abort before qdisc_create is called. [1] https://lore.kernel.org/netdev/d912cbd7-193b-4269-9857-525bee8bbb6a@gmail.com/ | |||||
| CVE-2025-38466 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf: Revert to requiring CAP_SYS_ADMIN for uprobes Jann reports that uprobes can be used destructively when used in the middle of an instruction. The kernel only verifies there is a valid instruction at the requested offset, but due to variable instruction length cannot determine if this is an instruction as seen by the intended execution stream. Additionally, Mark Rutland notes that on architectures that mix data in the text segment (like arm64), a similar things can be done if the data word is 'mistaken' for an instruction. As such, require CAP_SYS_ADMIN for uprobes. | |||||
| CVE-2025-38474 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: usb: net: sierra: check for no status endpoint The driver checks for having three endpoints and having bulk in and out endpoints, but not that the third endpoint is interrupt input. Rectify the omission. | |||||
| CVE-2023-6138 | 1 Hp | 6 Z440 Workstation, Z440 Workstation Firmware, Z640 Workstation and 3 more | 2025-12-22 | N/A | 7.9 HIGH |
| A potential security vulnerability has been identified in the system BIOS for certain HP Workstation PCs, which might allow escalation of privilege, arbitrary code execution, or denial of service. HP is releasing mitigation for the potential vulnerability. | |||||
| CVE-2022-48853 | 1 Linux | 1 Linux Kernel | 2025-12-21 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: swiotlb: fix info leak with DMA_FROM_DEVICE The problem I'm addressing was discovered by the LTP test covering cve-2018-1000204. A short description of what happens follows: 1) The test case issues a command code 00 (TEST UNIT READY) via the SG_IO interface with: dxfer_len == 524288, dxdfer_dir == SG_DXFER_FROM_DEV and a corresponding dxferp. The peculiar thing about this is that TUR is not reading from the device. 2) In sg_start_req() the invocation of blk_rq_map_user() effectively bounces the user-space buffer. As if the device was to transfer into it. Since commit a45b599ad808 ("scsi: sg: allocate with __GFP_ZERO in sg_build_indirect()") we make sure this first bounce buffer is allocated with GFP_ZERO. 3) For the rest of the story we keep ignoring that we have a TUR, so the device won't touch the buffer we prepare as if the we had a DMA_FROM_DEVICE type of situation. My setup uses a virtio-scsi device and the buffer allocated by SG is mapped by the function virtqueue_add_split() which uses DMA_FROM_DEVICE for the "in" sgs (here scatter-gather and not scsi generics). This mapping involves bouncing via the swiotlb (we need swiotlb to do virtio in protected guest like s390 Secure Execution, or AMD SEV). 4) When the SCSI TUR is done, we first copy back the content of the second (that is swiotlb) bounce buffer (which most likely contains some previous IO data), to the first bounce buffer, which contains all zeros. Then we copy back the content of the first bounce buffer to the user-space buffer. 5) The test case detects that the buffer, which it zero-initialized, ain't all zeros and fails. One can argue that this is an swiotlb problem, because without swiotlb we leak all zeros, and the swiotlb should be transparent in a sense that it does not affect the outcome (if all other participants are well behaved). Copying the content of the original buffer into the swiotlb buffer is the only way I can think of to make swiotlb transparent in such scenarios. So let's do just that if in doubt, but allow the driver to tell us that the whole mapped buffer is going to be overwritten, in which case we can preserve the old behavior and avoid the performance impact of the extra bounce. | |||||
| CVE-2022-32387 | 1 Kentico | 1 Xperience | 2025-12-19 | N/A | 7.5 HIGH |
| In Kentico before 13.0.66, attackers can achieve Denial of Service via a crafted request to the GetResource handler. | |||||
| CVE-2025-38310 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: seg6: Fix validation of nexthop addresses The kernel currently validates that the length of the provided nexthop address does not exceed the specified length. This can lead to the kernel reading uninitialized memory if user space provided a shorter length than the specified one. Fix by validating that the provided length exactly matches the specified one. | |||||
| CVE-2025-38305 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use() There is no disagreement that we should check both ptp->is_virtual_clock and ptp->n_vclocks to check if the ptp virtual clock is in use. However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in ptp_vclock_in_use(), we observe a recursive lock in the call trace starting from n_vclocks_store(). ============================================ WARNING: possible recursive locking detected 6.15.0-rc6 #1 Not tainted -------------------------------------------- syz.0.1540/13807 is trying to acquire lock: ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline] ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415 but task is already holding lock: ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&ptp->n_vclocks_mux); lock(&ptp->n_vclocks_mux); *** DEADLOCK *** .... ============================================ The best way to solve this is to remove the logic that checks ptp->n_vclocks in ptp_vclock_in_use(). The reason why this is appropriate is that any path that uses ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater than 0 before unregistering vclocks, and all functions are already written this way. And in the function that uses ptp->n_vclocks, we already get ptp->n_vclocks_mux before unregistering vclocks. Therefore, we need to remove the redundant check for ptp->n_vclocks in ptp_vclock_in_use() to prevent recursive locking. | |||||
| CVE-2025-37936 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: KVM: Mask PEBS_ENABLE loaded for guest with vCPU's value. When generating the MSR_IA32_PEBS_ENABLE value that will be loaded on VM-Entry to a KVM guest, mask the value with the vCPU's desired PEBS_ENABLE value. Consulting only the host kernel's host vs. guest masks results in running the guest with PEBS enabled even when the guest doesn't want to use PEBS. Because KVM uses perf events to proxy the guest virtual PMU, simply looking at exclude_host can't differentiate between events created by host userspace, and events created by KVM on behalf of the guest. Running the guest with PEBS unexpectedly enabled typically manifests as crashes due to a near-infinite stream of #PFs. E.g. if the guest hasn't written MSR_IA32_DS_AREA, the CPU will hit page faults on address '0' when trying to record PEBS events. The issue is most easily reproduced by running `perf kvm top` from before commit 7b100989b4f6 ("perf evlist: Remove __evlist__add_default") (after which, `perf kvm top` effectively stopped using PEBS). The userspace side of perf creates a guest-only PEBS event, which intel_guest_get_msrs() misconstrues a guest-*owned* PEBS event. Arguably, this is a userspace bug, as enabling PEBS on guest-only events simply cannot work, and userspace can kill VMs in many other ways (there is no danger to the host). However, even if this is considered to be bad userspace behavior, there's zero downside to perf/KVM restricting PEBS to guest-owned events. Note, commit 854250329c02 ("KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations") fixed the case where host userspace is profiling KVM *and* userspace, but missed the case where userspace is profiling only KVM. | |||||
| CVE-2025-37932 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: sch_htb: make htb_qlen_notify() idempotent htb_qlen_notify() always deactivates the HTB class and in fact could trigger a warning if it is already deactivated. Therefore, it is not idempotent and not friendly to its callers, like fq_codel_dequeue(). Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers' life. | |||||
| CVE-2025-37931 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: adjust subpage bit start based on sectorsize When running machines with 64k page size and a 16k nodesize we started seeing tree log corruption in production. This turned out to be because we were not writing out dirty blocks sometimes, so this in fact affects all metadata writes. When writing out a subpage EB we scan the subpage bitmap for a dirty range. If the range isn't dirty we do bit_start++; to move onto the next bit. The problem is the bitmap is based on the number of sectors that an EB has. So in this case, we have a 64k pagesize, 16k nodesize, but a 4k sectorsize. This means our bitmap is 4 bits for every node. With a 64k page size we end up with 4 nodes per page. To make this easier this is how everything looks [0 16k 32k 48k ] logical address [0 4 8 12 ] radix tree offset [ 64k page ] folio [ 16k eb ][ 16k eb ][ 16k eb ][ 16k eb ] extent buffers [ | | | | | | | | | | | | | | | | ] bitmap Now we use all of our addressing based on fs_info->sectorsize_bits, so as you can see the above our 16k eb->start turns into radix entry 4. When we find a dirty range for our eb, we correctly do bit_start += sectors_per_node, because if we start at bit 0, the next bit for the next eb is 4, to correspond to eb->start 16k. However if our range is clean, we will do bit_start++, which will now put us offset from our radix tree entries. In our case, assume that the first time we check the bitmap the block is not dirty, we increment bit_start so now it == 1, and then we loop around and check again. This time it is dirty, and we go to find that start using the following equation start = folio_start + bit_start * fs_info->sectorsize; so in the case above, eb->start 0 is now dirty, and we calculate start as 0 + 1 * fs_info->sectorsize = 4096 4096 >> 12 = 1 Now we're looking up the radix tree for 1, and we won't find an eb. What's worse is now we're using bit_start == 1, so we do bit_start += sectors_per_node, which is now 5. If that eb is dirty we will run into the same thing, we will look at an offset that is not populated in the radix tree, and now we're skipping the writeout of dirty extent buffers. The best fix for this is to not use sectorsize_bits to address nodes, but that's a larger change. Since this is a fs corruption problem fix it simply by always using sectors_per_node to increment the start bit. | |||||
| CVE-2025-38347 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on ino and xnid syzbot reported a f2fs bug as below: INFO: task syz-executor140:5308 blocked for more than 143 seconds. Not tainted 6.14.0-rc7-syzkaller-00069-g81e4f8d68c66 #0 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor140 state:D stack:24016 pid:5308 tgid:5308 ppid:5306 task_flags:0x400140 flags:0x00000006 Call Trace: <TASK> context_switch kernel/sched/core.c:5378 [inline] __schedule+0x190e/0x4c90 kernel/sched/core.c:6765 __schedule_loop kernel/sched/core.c:6842 [inline] schedule+0x14b/0x320 kernel/sched/core.c:6857 io_schedule+0x8d/0x110 kernel/sched/core.c:7690 folio_wait_bit_common+0x839/0xee0 mm/filemap.c:1317 __folio_lock mm/filemap.c:1664 [inline] folio_lock include/linux/pagemap.h:1163 [inline] __filemap_get_folio+0x147/0xb40 mm/filemap.c:1917 pagecache_get_page+0x2c/0x130 mm/folio-compat.c:87 find_get_page_flags include/linux/pagemap.h:842 [inline] f2fs_grab_cache_page+0x2b/0x320 fs/f2fs/f2fs.h:2776 __get_node_page+0x131/0x11b0 fs/f2fs/node.c:1463 read_xattr_block+0xfb/0x190 fs/f2fs/xattr.c:306 lookup_all_xattrs fs/f2fs/xattr.c:355 [inline] f2fs_getxattr+0x676/0xf70 fs/f2fs/xattr.c:533 __f2fs_get_acl+0x52/0x870 fs/f2fs/acl.c:179 f2fs_acl_create fs/f2fs/acl.c:375 [inline] f2fs_init_acl+0xd7/0x9b0 fs/f2fs/acl.c:418 f2fs_init_inode_metadata+0xa0f/0x1050 fs/f2fs/dir.c:539 f2fs_add_inline_entry+0x448/0x860 fs/f2fs/inline.c:666 f2fs_add_dentry+0xba/0x1e0 fs/f2fs/dir.c:765 f2fs_do_add_link+0x28c/0x3a0 fs/f2fs/dir.c:808 f2fs_add_link fs/f2fs/f2fs.h:3616 [inline] f2fs_mknod+0x2e8/0x5b0 fs/f2fs/namei.c:766 vfs_mknod+0x36d/0x3b0 fs/namei.c:4191 unix_bind_bsd net/unix/af_unix.c:1286 [inline] unix_bind+0x563/0xe30 net/unix/af_unix.c:1379 __sys_bind_socket net/socket.c:1817 [inline] __sys_bind+0x1e4/0x290 net/socket.c:1848 __do_sys_bind net/socket.c:1853 [inline] __se_sys_bind net/socket.c:1851 [inline] __x64_sys_bind+0x7a/0x90 net/socket.c:1851 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Let's dump and check metadata of corrupted inode, it shows its xattr_nid is the same to its i_ino. dump.f2fs -i 3 chaseyu.img.raw i_xattr_nid [0x 3 : 3] So that, during mknod in the corrupted directory, it tries to get and lock inode page twice, result in deadlock. - f2fs_mknod - f2fs_add_inline_entry - f2fs_get_inode_page --- lock dir's inode page - f2fs_init_acl - f2fs_acl_create(dir,..) - __f2fs_get_acl - f2fs_getxattr - lookup_all_xattrs - __get_node_page --- try to lock dir's inode page In order to fix this, let's add sanity check on ino and xnid. | |||||
| CVE-2025-38331 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: ethernet: cortina: Use TOE/TSO on all TCP It is desireable to push the hardware accelerator to also process non-segmented TCP frames: we pass the skb->len to the "TOE/TSO" offloader and it will handle them. Without this quirk the driver becomes unstable and lock up and and crash. I do not know exactly why, but it is probably due to the TOE (TCP offload engine) feature that is coupled with the segmentation feature - it is not possible to turn one part off and not the other, either both TOE and TSO are active, or neither of them. Not having the TOE part active seems detrimental, as if that hardware feature is not really supposed to be turned off. The datasheet says: "Based on packet parsing and TCP connection/NAT table lookup results, the NetEngine puts the packets belonging to the same TCP connection to the same queue for the software to process. The NetEngine puts incoming packets to the buffer or series of buffers for a jumbo packet. With this hardware acceleration, IP/TCP header parsing, checksum validation and connection lookup are offloaded from the software processing." After numerous tests with the hardware locking up after something between minutes and hours depending on load using iperf3 I have concluded this is necessary to stabilize the hardware. | |||||
| CVE-2025-38326 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: aoe: clean device rq_list in aoedev_downdev() An aoe device's rq_list contains accepted block requests that are waiting to be transmitted to the aoe target. This queue was added as part of the conversion to blk_mq. However, the queue was not cleaned out when an aoe device is downed which caused blk_mq_freeze_queue() to sleep indefinitely waiting for those requests to complete, causing a hang. This fix cleans out the queue before calling blk_mq_freeze_queue(). | |||||
| CVE-2025-38324 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: mpls: Use rcu_dereference_rtnl() in mpls_route_input_rcu(). As syzbot reported [0], mpls_route_input_rcu() can be called from mpls_getroute(), where is under RTNL. net->mpls.platform_label is only updated under RTNL. Let's use rcu_dereference_rtnl() in mpls_route_input_rcu() to silence the splat. [0]: WARNING: suspicious RCU usage 6.15.0-rc7-syzkaller-00082-g5cdb2c77c4c3 #0 Not tainted ---------------------------- net/mpls/af_mpls.c:84 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by syz.2.4451/17730: #0: ffffffff9012a3e8 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_lock net/core/rtnetlink.c:80 [inline] #0: ffffffff9012a3e8 (rtnl_mutex){+.+.}-{4:4}, at: rtnetlink_rcv_msg+0x371/0xe90 net/core/rtnetlink.c:6961 stack backtrace: CPU: 1 UID: 0 PID: 17730 Comm: syz.2.4451 Not tainted 6.15.0-rc7-syzkaller-00082-g5cdb2c77c4c3 #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120 lockdep_rcu_suspicious+0x166/0x260 kernel/locking/lockdep.c:6865 mpls_route_input_rcu+0x1d4/0x200 net/mpls/af_mpls.c:84 mpls_getroute+0x621/0x1ea0 net/mpls/af_mpls.c:2381 rtnetlink_rcv_msg+0x3c9/0xe90 net/core/rtnetlink.c:6964 netlink_rcv_skb+0x16d/0x440 net/netlink/af_netlink.c:2534 netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline] netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339 netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883 sock_sendmsg_nosec net/socket.c:712 [inline] __sock_sendmsg net/socket.c:727 [inline] ____sys_sendmsg+0xa98/0xc70 net/socket.c:2566 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2620 __sys_sendmmsg+0x200/0x420 net/socket.c:2709 __do_sys_sendmmsg net/socket.c:2736 [inline] __se_sys_sendmmsg net/socket.c:2733 [inline] __x64_sys_sendmmsg+0x9c/0x100 net/socket.c:2733 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0x230 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f0a2818e969 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f0a28f52038 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00007f0a283b5fa0 RCX: 00007f0a2818e969 RDX: 0000000000000003 RSI: 0000200000000080 RDI: 0000000000000003 RBP: 00007f0a28210ab1 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f0a283b5fa0 R15: 00007ffce5e9f268 </TASK> | |||||
| CVE-2025-38322 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-19 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: perf/x86/intel: Fix crash in icl_update_topdown_event() The perf_fuzzer found a hard-lockup crash on a RaptorLake machine: Oops: general protection fault, maybe for address 0xffff89aeceab400: 0000 CPU: 23 UID: 0 PID: 0 Comm: swapper/23 Tainted: [W]=WARN Hardware name: Dell Inc. Precision 9660/0VJ762 RIP: 0010:native_read_pmc+0x7/0x40 Code: cc e8 8d a9 01 00 48 89 03 5b cd cc cc cc cc 0f 1f ... RSP: 000:fffb03100273de8 EFLAGS: 00010046 .... Call Trace: <TASK> icl_update_topdown_event+0x165/0x190 ? ktime_get+0x38/0xd0 intel_pmu_read_event+0xf9/0x210 __perf_event_read+0xf9/0x210 CPUs 16-23 are E-core CPUs that don't support the perf metrics feature. The icl_update_topdown_event() should not be invoked on these CPUs. It's a regression of commit: f9bdf1f95339 ("perf/x86/intel: Avoid disable PMU if !cpuc->enabled in sample read") The bug introduced by that commit is that the is_topdown_event() function is mistakenly used to replace the is_topdown_count() call to check if the topdown functions for the perf metrics feature should be invoked. Fix it. | |||||
| CVE-2025-38037 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: vxlan: Annotate FDB data races The 'used' and 'updated' fields in the FDB entry structure can be accessed concurrently by multiple threads, leading to reports such as [1]. Can be reproduced using [2]. Suppress these reports by annotating these accesses using READ_ONCE() / WRITE_ONCE(). [1] BUG: KCSAN: data-race in vxlan_xmit / vxlan_xmit write to 0xffff942604d263a8 of 8 bytes by task 286 on cpu 0: vxlan_xmit+0xb29/0x2380 dev_hard_start_xmit+0x84/0x2f0 __dev_queue_xmit+0x45a/0x1650 packet_xmit+0x100/0x150 packet_sendmsg+0x2114/0x2ac0 __sys_sendto+0x318/0x330 __x64_sys_sendto+0x76/0x90 x64_sys_call+0x14e8/0x1c00 do_syscall_64+0x9e/0x1a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f read to 0xffff942604d263a8 of 8 bytes by task 287 on cpu 2: vxlan_xmit+0xadf/0x2380 dev_hard_start_xmit+0x84/0x2f0 __dev_queue_xmit+0x45a/0x1650 packet_xmit+0x100/0x150 packet_sendmsg+0x2114/0x2ac0 __sys_sendto+0x318/0x330 __x64_sys_sendto+0x76/0x90 x64_sys_call+0x14e8/0x1c00 do_syscall_64+0x9e/0x1a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f value changed: 0x00000000fffbac6e -> 0x00000000fffbac6f Reported by Kernel Concurrency Sanitizer on: CPU: 2 UID: 0 PID: 287 Comm: mausezahn Not tainted 6.13.0-rc7-01544-gb4b270f11a02 #5 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 [2] #!/bin/bash set +H echo whitelist > /sys/kernel/debug/kcsan echo !vxlan_xmit > /sys/kernel/debug/kcsan ip link add name vx0 up type vxlan id 10010 dstport 4789 local 192.0.2.1 bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 198.51.100.1 taskset -c 0 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q & taskset -c 2 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q & | |||||
| CVE-2025-38040 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: serial: mctrl_gpio: split disable_ms into sync and no_sync APIs The following splat has been observed on a SAMA5D27 platform using atmel_serial: BUG: sleeping function called from invalid context at kernel/irq/manage.c:738 in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 27, name: kworker/u5:0 preempt_count: 1, expected: 0 INFO: lockdep is turned off. irq event stamp: 0 hardirqs last enabled at (0): [<00000000>] 0x0 hardirqs last disabled at (0): [<c01588f0>] copy_process+0x1c4c/0x7bec softirqs last enabled at (0): [<c0158944>] copy_process+0x1ca0/0x7bec softirqs last disabled at (0): [<00000000>] 0x0 CPU: 0 UID: 0 PID: 27 Comm: kworker/u5:0 Not tainted 6.13.0-rc7+ #74 Hardware name: Atmel SAMA5 Workqueue: hci0 hci_power_on [bluetooth] Call trace: unwind_backtrace from show_stack+0x18/0x1c show_stack from dump_stack_lvl+0x44/0x70 dump_stack_lvl from __might_resched+0x38c/0x598 __might_resched from disable_irq+0x1c/0x48 disable_irq from mctrl_gpio_disable_ms+0x74/0xc0 mctrl_gpio_disable_ms from atmel_disable_ms.part.0+0x80/0x1f4 atmel_disable_ms.part.0 from atmel_set_termios+0x764/0x11e8 atmel_set_termios from uart_change_line_settings+0x15c/0x994 uart_change_line_settings from uart_set_termios+0x2b0/0x668 uart_set_termios from tty_set_termios+0x600/0x8ec tty_set_termios from ttyport_set_flow_control+0x188/0x1e0 ttyport_set_flow_control from wilc_setup+0xd0/0x524 [hci_wilc] wilc_setup [hci_wilc] from hci_dev_open_sync+0x330/0x203c [bluetooth] hci_dev_open_sync [bluetooth] from hci_dev_do_open+0x40/0xb0 [bluetooth] hci_dev_do_open [bluetooth] from hci_power_on+0x12c/0x664 [bluetooth] hci_power_on [bluetooth] from process_one_work+0x998/0x1a38 process_one_work from worker_thread+0x6e0/0xfb4 worker_thread from kthread+0x3d4/0x484 kthread from ret_from_fork+0x14/0x28 This warning is emitted when trying to toggle, at the highest level, some flow control (with serdev_device_set_flow_control) in a device driver. At the lowest level, the atmel_serial driver is using serial_mctrl_gpio lib to enable/disable the corresponding IRQs accordingly. The warning emitted by CONFIG_DEBUG_ATOMIC_SLEEP is due to disable_irq (called in mctrl_gpio_disable_ms) being possibly called in some atomic context (some tty drivers perform modem lines configuration in regions protected by port lock). Split mctrl_gpio_disable_ms into two differents APIs, a non-blocking one and a blocking one. Replace mctrl_gpio_disable_ms calls with the relevant version depending on whether the call is protected by some port lock. | |||||
| CVE-2025-38061 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: pktgen: fix access outside of user given buffer in pktgen_thread_write() Honour the user given buffer size for the strn_len() calls (otherwise strn_len() will access memory outside of the user given buffer). | |||||
