Vulnerabilities (CVE)

Filtered by NVD-CWE-noinfo
Total 34454 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2023-53530 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Use raw_smp_processor_id() instead of smp_processor_id() The following call trace was observed: localhost kernel: nvme nvme0: NVME-FC{0}: controller connect complete localhost kernel: BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u129:4/75092 localhost kernel: nvme nvme0: NVME-FC{0}: new ctrl: NQN "nqn.1992-08.com.netapp:sn.b42d198afb4d11ecad6d00a098d6abfa:subsystem.PR_Channel2022_RH84_subsystem_291" localhost kernel: caller is qla_nvme_post_cmd+0x216/0x1380 [qla2xxx] localhost kernel: CPU: 6 PID: 75092 Comm: kworker/u129:4 Kdump: loaded Tainted: G B W OE --------- --- 5.14.0-70.22.1.el9_0.x86_64+debug #1 localhost kernel: Hardware name: HPE ProLiant XL420 Gen10/ProLiant XL420 Gen10, BIOS U39 01/13/2022 localhost kernel: Workqueue: nvme-wq nvme_async_event_work [nvme_core] localhost kernel: Call Trace: localhost kernel: dump_stack_lvl+0x57/0x7d localhost kernel: check_preemption_disabled+0xc8/0xd0 localhost kernel: qla_nvme_post_cmd+0x216/0x1380 [qla2xxx] Use raw_smp_processor_id() instead of smp_processor_id(). Also use queue_work() across the driver instead of queue_work_on() thus avoiding usage of smp_processor_id() when CONFIG_DEBUG_PREEMPT is enabled.
CVE-2023-53528 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix unsafe drain work queue code If create_qp does not fully succeed it is possible for qp cleanup code to attempt to drain the send or recv work queues before the queues have been created causing a seg fault. This patch checks to see if the queues exist before attempting to drain them.
CVE-2023-53526 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: jbd2: check 'jh->b_transaction' before removing it from checkpoint Following process will corrupt ext4 image: Step 1: jbd2_journal_commit_transaction __jbd2_journal_insert_checkpoint(jh, commit_transaction) // Put jh into trans1->t_checkpoint_list journal->j_checkpoint_transactions = commit_transaction // Put trans1 into journal->j_checkpoint_transactions Step 2: do_get_write_access test_clear_buffer_dirty(bh) // clear buffer dirty,set jbd dirty __jbd2_journal_file_buffer(jh, transaction) // jh belongs to trans2 Step 3: drop_cache journal_shrink_one_cp_list jbd2_journal_try_remove_checkpoint if (!trylock_buffer(bh)) // lock bh, true if (buffer_dirty(bh)) // buffer is not dirty __jbd2_journal_remove_checkpoint(jh) // remove jh from trans1->t_checkpoint_list Step 4: jbd2_log_do_checkpoint trans1 = journal->j_checkpoint_transactions // jh is not in trans1->t_checkpoint_list jbd2_cleanup_journal_tail(journal) // trans1 is done Step 5: Power cut, trans2 is not committed, jh is lost in next mounting. Fix it by checking 'jh->b_transaction' before remove it from checkpoint.
CVE-2023-53392 1 Linux 1 Linux Kernel 2026-01-27 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: HID: intel-ish-hid: Fix kernel panic during warm reset During warm reset device->fw_client is set to NULL. If a bus driver is registered after this NULL setting and before new firmware clients are enumerated by ISHTP, kernel panic will result in the function ishtp_cl_bus_match(). This is because of reference to device->fw_client->props.protocol_name. ISH firmware after getting successfully loaded, sends a warm reset notification to remove all clients from the bus and sets device->fw_client to NULL. Until kernel v5.15, all enabled ISHTP kernel module drivers were loaded right after any of the first ISHTP device was registered, regardless of whether it was a matched or an unmatched device. This resulted in all drivers getting registered much before the warm reset notification from ISH. Starting kernel v5.16, this issue got exposed after the change was introduced to load only bus drivers for the respective matching devices. In this scenario, cros_ec_ishtp device and cros_ec_ishtp driver are registered after the warm reset device fw_client NULL setting. cros_ec_ishtp driver_register() triggers the callback to ishtp_cl_bus_match() to match ISHTP driver to the device and causes kernel panic in guid_equal() when dereferencing fw_client NULL pointer to get protocol_name.
CVE-2023-53301 1 Linux 1 Linux Kernel 2026-01-27 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix kernel crash due to null io->bio We should return when io->bio is null before doing anything. Otherwise, panic. BUG: kernel NULL pointer dereference, address: 0000000000000010 RIP: 0010:__submit_merged_write_cond+0x164/0x240 [f2fs] Call Trace: <TASK> f2fs_submit_merged_write+0x1d/0x30 [f2fs] commit_checkpoint+0x110/0x1e0 [f2fs] f2fs_write_checkpoint+0x9f7/0xf00 [f2fs] ? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs] __checkpoint_and_complete_reqs+0x84/0x190 [f2fs] ? preempt_count_add+0x82/0xc0 ? __pfx_issue_checkpoint_thread+0x10/0x10 [f2fs] issue_checkpoint_thread+0x4c/0xf0 [f2fs] ? __pfx_autoremove_wake_function+0x10/0x10 kthread+0xff/0x130 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK>
CVE-2025-39933 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: smb: client: let recv_done verify data_offset, data_length and remaining_data_length This is inspired by the related server fixes.
CVE-2025-39932 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: smb: client: let smbd_destroy() call disable_work_sync(&info->post_send_credits_work) In smbd_destroy() we may destroy the memory so we better wait until post_send_credits_work is no longer pending and will never be started again. I actually just hit the case using rxe: WARNING: CPU: 0 PID: 138 at drivers/infiniband/sw/rxe/rxe_verbs.c:1032 rxe_post_recv+0x1ee/0x480 [rdma_rxe] ... [ 5305.686979] [ T138] smbd_post_recv+0x445/0xc10 [cifs] [ 5305.687135] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687149] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687185] [ T138] ? __pfx_smbd_post_recv+0x10/0x10 [cifs] [ 5305.687329] [ T138] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 5305.687356] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687368] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687378] [ T138] ? _raw_spin_unlock_irqrestore+0x11/0x60 [ 5305.687389] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687399] [ T138] ? get_receive_buffer+0x168/0x210 [cifs] [ 5305.687555] [ T138] smbd_post_send_credits+0x382/0x4b0 [cifs] [ 5305.687701] [ T138] ? __pfx_smbd_post_send_credits+0x10/0x10 [cifs] [ 5305.687855] [ T138] ? __pfx___schedule+0x10/0x10 [ 5305.687865] [ T138] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 5305.687875] [ T138] ? queue_delayed_work_on+0x8e/0xa0 [ 5305.687889] [ T138] process_one_work+0x629/0xf80 [ 5305.687908] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5 [ 5305.687917] [ T138] ? __kasan_check_write+0x14/0x30 [ 5305.687933] [ T138] worker_thread+0x87f/0x1570 ... It means rxe_post_recv was called after rdma_destroy_qp(). This happened because put_receive_buffer() was triggered by ib_drain_qp() and called: queue_work(info->workqueue, &info->post_send_credits_work);
CVE-2025-20946 1 Samsung 11 Galaxy Watch, Galaxy Watch 4, Galaxy Watch 4 Classic and 8 more 2026-01-27 N/A 8.8 HIGH
Improper handling of exceptional conditions in pairing specific bluetooth devices in Galaxy Watch Bluetooth pairing prior to SMR Apr-2025 Release 1 allows local attackers to pair with specific bluetooth devices without user interaction.
CVE-2025-20939 1 Samsung 11 Galaxy Watch, Galaxy Watch 4, Galaxy Watch 4 Classic and 8 more 2026-01-27 N/A 5.4 MEDIUM
Improper authorization in wireless download protocol in Galaxy Watch prior to SMR Apr-2025 Release 1 allows physical attackers to update device unique identifier of Watch devices.
CVE-2022-50485 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ext4: add EXT4_IGET_BAD flag to prevent unexpected bad inode There are many places that will get unhappy (and crash) when ext4_iget() returns a bad inode. However, if iget the boot loader inode, allows a bad inode to be returned, because the inode may not be initialized. This mechanism can be used to bypass some checks and cause panic. To solve this problem, we add a special iget flag EXT4_IGET_BAD. Only with this flag we'd be returning bad inode from ext4_iget(), otherwise we always return the error code if the inode is bad inode.(suggested by Jan Kara)
CVE-2022-50486 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: Fix return type of netcp_ndo_start_xmit() With clang's kernel control flow integrity (kCFI, CONFIG_CFI_CLANG), indirect call targets are validated against the expected function pointer prototype to make sure the call target is valid to help mitigate ROP attacks. If they are not identical, there is a failure at run time, which manifests as either a kernel panic or thread getting killed. A proposed warning in clang aims to catch these at compile time, which reveals: drivers/net/ethernet/ti/netcp_core.c:1944:21: error: incompatible function pointer types initializing 'netdev_tx_t (*)(struct sk_buff *, struct net_device *)' (aka 'enum netdev_tx (*)(struct sk_buff *, struct net_device *)') with an expression of type 'int (struct sk_buff *, struct net_device *)' [-Werror,-Wincompatible-function-pointer-types-strict] .ndo_start_xmit = netcp_ndo_start_xmit, ^~~~~~~~~~~~~~~~~~~~ 1 error generated. ->ndo_start_xmit() in 'struct net_device_ops' expects a return type of 'netdev_tx_t', not 'int'. Adjust the return type of netcp_ndo_start_xmit() to match the prototype's to resolve the warning and CFI failure.
CVE-2022-50489 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/mipi-dsi: Detach devices when removing the host Whenever the MIPI-DSI host is unregistered, the code of mipi_dsi_host_unregister() loops over every device currently found on that bus and will unregister it. However, it doesn't detach it from the bus first, which leads to all kind of resource leaks if the host wants to perform some clean up whenever a device is detached.
CVE-2022-50491 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: coresight: cti: Fix hang in cti_disable_hw() cti_enable_hw() and cti_disable_hw() are called from an atomic context so shouldn't use runtime PM because it can result in a sleep when communicating with firmware. Since commit 3c6656337852 ("Revert "firmware: arm_scmi: Add clock management to the SCMI power domain""), this causes a hang on Juno when running the Perf Coresight tests or running this command: perf record -e cs_etm//u -- ls This was also missed until the revert commit because pm_runtime_put() was called with the wrong device until commit 692c9a499b28 ("coresight: cti: Correct the parameter for pm_runtime_put") With lock and scheduler debugging enabled the following is output: coresight cti_sys0: cti_enable_hw -- dev:cti_sys0 parent: 20020000.cti BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:1151 in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 330, name: perf-exec preempt_count: 2, expected: 0 RCU nest depth: 0, expected: 0 INFO: lockdep is turned off. irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948 softirqs last enabled at (0): [<ffff80000822b394>] copy_process+0xa0c/0x1948 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 3 PID: 330 Comm: perf-exec Not tainted 6.0.0-00053-g042116d99298 #7 Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform, BIOS EDK II Sep 13 2022 Call trace: dump_backtrace+0x134/0x140 show_stack+0x20/0x58 dump_stack_lvl+0x8c/0xb8 dump_stack+0x18/0x34 __might_resched+0x180/0x228 __might_sleep+0x50/0x88 __pm_runtime_resume+0xac/0xb0 cti_enable+0x44/0x120 coresight_control_assoc_ectdev+0xc0/0x150 coresight_enable_path+0xb4/0x288 etm_event_start+0x138/0x170 etm_event_add+0x48/0x70 event_sched_in.isra.122+0xb4/0x280 merge_sched_in+0x1fc/0x3d0 visit_groups_merge.constprop.137+0x16c/0x4b0 ctx_sched_in+0x114/0x1f0 perf_event_sched_in+0x60/0x90 ctx_resched+0x68/0xb0 perf_event_exec+0x138/0x508 begin_new_exec+0x52c/0xd40 load_elf_binary+0x6b8/0x17d0 bprm_execve+0x360/0x7f8 do_execveat_common.isra.47+0x218/0x238 __arm64_sys_execve+0x48/0x60 invoke_syscall+0x4c/0x110 el0_svc_common.constprop.4+0xfc/0x120 do_el0_svc+0x34/0xc0 el0_svc+0x40/0x98 el0t_64_sync_handler+0x98/0xc0 el0t_64_sync+0x170/0x174 Fix the issue by removing the runtime PM calls completely. They are not needed here because it must have already been done when building the path for a trace. [ Fix build warnings ]
CVE-2023-53232 1 Linux 1 Linux Kernel 2026-01-27 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix kernel panic by accessing unallocated eeprom.data The MT7921 driver no longer uses eeprom.data, but the relevant code has not been removed completely since commit 16d98b548365 ("mt76: mt7921: rely on mcu_get_nic_capability"). This could result in potential invalid memory access. To fix the kernel panic issue in mt7921, it is necessary to avoid accessing unallocated eeprom.data which can lead to invalid memory access. Furthermore, it is possible to entirely eliminate the mt7921_mcu_parse_eeprom function and solely depend on mt7921_mcu_parse_response to divide the RxD header. [2.702735] BUG: kernel NULL pointer dereference, address: 0000000000000550 [2.702740] #PF: supervisor write access in kernel mode [2.702741] #PF: error_code(0x0002) - not-present page [2.702743] PGD 0 P4D 0 [2.702747] Oops: 0002 [#1] PREEMPT SMP NOPTI [2.702755] RIP: 0010:mt7921_mcu_parse_response+0x147/0x170 [mt7921_common] [2.702758] RSP: 0018:ffffae7c00fef828 EFLAGS: 00010286 [2.702760] RAX: ffffa367f57be024 RBX: ffffa367cc7bf500 RCX: 0000000000000000 [2.702762] RDX: 0000000000000550 RSI: 0000000000000000 RDI: ffffa367cc7bf500 [2.702763] RBP: ffffae7c00fef840 R08: ffffa367cb167000 R09: 0000000000000005 [2.702764] R10: 0000000000000000 R11: ffffffffc04702e4 R12: ffffa367e8329f40 [2.702766] R13: 0000000000000000 R14: 0000000000000001 R15: ffffa367e8329f40 [2.702768] FS: 000079ee6cf20c40(0000) GS:ffffa36b2f940000(0000) knlGS:0000000000000000 [2.702769] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.702775] CR2: 0000000000000550 CR3: 00000001233c6004 CR4: 0000000000770ee0 [2.702776] PKRU: 55555554 [2.702777] Call Trace: [2.702782] mt76_mcu_skb_send_and_get_msg+0xc3/0x11e [mt76 <HASH:1bc4 5>] [2.702785] mt7921_run_firmware+0x241/0x853 [mt7921_common <HASH:6a2f 6>] [2.702789] mt7921e_mcu_init+0x2b/0x56 [mt7921e <HASH:d290 7>] [2.702792] mt7921_register_device+0x2eb/0x5a5 [mt7921_common <HASH:6a2f 6>] [2.702795] ? mt7921_irq_tasklet+0x1d4/0x1d4 [mt7921e <HASH:d290 7>] [2.702797] mt7921_pci_probe+0x2d6/0x319 [mt7921e <HASH:d290 7>] [2.702799] pci_device_probe+0x9f/0x12a
CVE-2025-39949 1 Linux 1 Linux Kernel 2026-01-27 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: qed: Don't collect too many protection override GRC elements In the protection override dump path, the firmware can return far too many GRC elements, resulting in attempting to write past the end of the previously-kmalloc'ed dump buffer. This will result in a kernel panic with reason: BUG: unable to handle kernel paging request at ADDRESS where "ADDRESS" is just past the end of the protection override dump buffer. The start address of the buffer is: p_hwfn->cdev->dbg_features[DBG_FEATURE_PROTECTION_OVERRIDE].dump_buf and the size of the buffer is buf_size in the same data structure. The panic can be arrived at from either the qede Ethernet driver path: [exception RIP: qed_grc_dump_addr_range+0x108] qed_protection_override_dump at ffffffffc02662ed [qed] qed_dbg_protection_override_dump at ffffffffc0267792 [qed] qed_dbg_feature at ffffffffc026aa8f [qed] qed_dbg_all_data at ffffffffc026b211 [qed] qed_fw_fatal_reporter_dump at ffffffffc027298a [qed] devlink_health_do_dump at ffffffff82497f61 devlink_health_report at ffffffff8249cf29 qed_report_fatal_error at ffffffffc0272baf [qed] qede_sp_task at ffffffffc045ed32 [qede] process_one_work at ffffffff81d19783 or the qedf storage driver path: [exception RIP: qed_grc_dump_addr_range+0x108] qed_protection_override_dump at ffffffffc068b2ed [qed] qed_dbg_protection_override_dump at ffffffffc068c792 [qed] qed_dbg_feature at ffffffffc068fa8f [qed] qed_dbg_all_data at ffffffffc0690211 [qed] qed_fw_fatal_reporter_dump at ffffffffc069798a [qed] devlink_health_do_dump at ffffffff8aa95e51 devlink_health_report at ffffffff8aa9ae19 qed_report_fatal_error at ffffffffc0697baf [qed] qed_hw_err_notify at ffffffffc06d32d7 [qed] qed_spq_post at ffffffffc06b1011 [qed] qed_fcoe_destroy_conn at ffffffffc06b2e91 [qed] qedf_cleanup_fcport at ffffffffc05e7597 [qedf] qedf_rport_event_handler at ffffffffc05e7bf7 [qedf] fc_rport_work at ffffffffc02da715 [libfc] process_one_work at ffffffff8a319663 Resolve this by clamping the firmware's return value to the maximum number of legal elements the firmware should return.
CVE-2023-31595 1 Icrealtime 2 Icip-p2012t, Icip-p2012t Firmware 2026-01-27 N/A 7.5 HIGH
IC Realtime ICIP-P2012T 2.420 is vulnerable to Incorrect Access Control via unauthenticated port access.
CVE-2025-58581 1 Sick 1 Enterprise Analytics 2026-01-27 N/A 4.3 MEDIUM
When an error occurs in the application a full stacktrace is provided to the user. The stacktrace lists class and method names as well as other internal information. An attacker can thus obtain information about the technology used and the structure of the application.
CVE-2025-39687 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-27 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: iio: light: as73211: Ensure buffer holes are zeroed Given that the buffer is copied to a kfifo that ultimately user space can read, ensure we zero it.
CVE-2025-38698 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-26 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: jfs: Regular file corruption check The reproducer builds a corrupted file on disk with a negative i_size value. Add a check when opening this file to avoid subsequent operation failures.
CVE-2025-38279 1 Linux 1 Linux Kernel 2026-01-26 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: bpf: Do not include stack ptr register in precision backtracking bookkeeping Yi Lai reported an issue ([1]) where the following warning appears in kernel dmesg: [ 60.643604] verifier backtracking bug [ 60.643635] WARNING: CPU: 10 PID: 2315 at kernel/bpf/verifier.c:4302 __mark_chain_precision+0x3a6c/0x3e10 [ 60.648428] Modules linked in: bpf_testmod(OE) [ 60.650471] CPU: 10 UID: 0 PID: 2315 Comm: test_progs Tainted: G OE 6.15.0-rc4-gef11287f8289-dirty #327 PREEMPT(full) [ 60.654385] Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE [ 60.656682] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 60.660475] RIP: 0010:__mark_chain_precision+0x3a6c/0x3e10 [ 60.662814] Code: 5a 30 84 89 ea e8 c4 d9 01 00 80 3d 3e 7d d8 04 00 0f 85 60 fa ff ff c6 05 31 7d d8 04 01 48 c7 c7 00 58 30 84 e8 c4 06 a5 ff <0f> 0b e9 46 fa ff ff 48 ... [ 60.668720] RSP: 0018:ffff888116cc7298 EFLAGS: 00010246 [ 60.671075] RAX: 54d70e82dfd31900 RBX: ffff888115b65e20 RCX: 0000000000000000 [ 60.673659] RDX: 0000000000000001 RSI: 0000000000000004 RDI: 00000000ffffffff [ 60.676241] RBP: 0000000000000400 R08: ffff8881f6f23bd3 R09: 1ffff1103ede477a [ 60.678787] R10: dffffc0000000000 R11: ffffed103ede477b R12: ffff888115b60ae8 [ 60.681420] R13: 1ffff11022b6cbc4 R14: 00000000fffffff2 R15: 0000000000000001 [ 60.684030] FS: 00007fc2aedd80c0(0000) GS:ffff88826fa8a000(0000) knlGS:0000000000000000 [ 60.686837] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 60.689027] CR2: 000056325369e000 CR3: 000000011088b002 CR4: 0000000000370ef0 [ 60.691623] Call Trace: [ 60.692821] <TASK> [ 60.693960] ? __pfx_verbose+0x10/0x10 [ 60.695656] ? __pfx_disasm_kfunc_name+0x10/0x10 [ 60.697495] check_cond_jmp_op+0x16f7/0x39b0 [ 60.699237] do_check+0x58fa/0xab10 ... Further analysis shows the warning is at line 4302 as below: 4294 /* static subprog call instruction, which 4295 * means that we are exiting current subprog, 4296 * so only r1-r5 could be still requested as 4297 * precise, r0 and r6-r10 or any stack slot in 4298 * the current frame should be zero by now 4299 */ 4300 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 4301 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 4302 WARN_ONCE(1, "verifier backtracking bug"); 4303 return -EFAULT; 4304 } With the below test (also in the next patch): __used __naked static void __bpf_jmp_r10(void) { asm volatile ( "r2 = 2314885393468386424 ll;" "goto +0;" "if r2 <= r10 goto +3;" "if r1 >= -1835016 goto +0;" "if r2 <= 8 goto +0;" "if r3 <= 0 goto +0;" "exit;" ::: __clobber_all); } SEC("?raw_tp") __naked void bpf_jmp_r10(void) { asm volatile ( "r3 = 0 ll;" "call __bpf_jmp_r10;" "r0 = 0;" "exit;" ::: __clobber_all); } The following is the verifier failure log: 0: (18) r3 = 0x0 ; R3_w=0 2: (85) call pc+2 caller: R10=fp0 callee: frame1: R1=ctx() R3_w=0 R10=fp0 5: frame1: R1=ctx() R3_w=0 R10=fp0 ; asm volatile (" \ @ verifier_precision.c:184 5: (18) r2 = 0x20202000256c6c78 ; frame1: R2_w=0x20202000256c6c78 7: (05) goto pc+0 8: (bd) if r2 <= r10 goto pc+3 ; frame1: R2_w=0x20202000256c6c78 R10=fp0 9: (35) if r1 >= 0xffe3fff8 goto pc+0 ; frame1: R1=ctx() 10: (b5) if r2 <= 0x8 goto pc+0 mark_precise: frame1: last_idx 10 first_idx 0 subseq_idx -1 mark_precise: frame1: regs=r2 stack= before 9: (35) if r1 >= 0xffe3fff8 goto pc+0 mark_precise: frame1: regs=r2 stack= before 8: (bd) if r2 <= r10 goto pc+3 mark_preci ---truncated---