Filtered by vendor Linux
Subscribe
Total
15153 CVE
| CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
|---|---|---|---|---|---|
| CVE-2024-56641 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: initialize close_work early to avoid warning We encountered a warning that close_work was canceled before initialization. WARNING: CPU: 7 PID: 111103 at kernel/workqueue.c:3047 __flush_work+0x19e/0x1b0 Workqueue: events smc_lgr_terminate_work [smc] RIP: 0010:__flush_work+0x19e/0x1b0 Call Trace: ? __wake_up_common+0x7a/0x190 ? work_busy+0x80/0x80 __cancel_work_timer+0xe3/0x160 smc_close_cancel_work+0x1a/0x70 [smc] smc_close_active_abort+0x207/0x360 [smc] __smc_lgr_terminate.part.38+0xc8/0x180 [smc] process_one_work+0x19e/0x340 worker_thread+0x30/0x370 ? process_one_work+0x340/0x340 kthread+0x117/0x130 ? __kthread_cancel_work+0x50/0x50 ret_from_fork+0x22/0x30 This is because when smc_close_cancel_work is triggered, e.g. the RDMA driver is rmmod and the LGR is terminated, the conn->close_work is flushed before initialization, resulting in WARN_ON(!work->func). __smc_lgr_terminate | smc_connect_{rdma|ism} ------------------------------------------------------------- | smc_conn_create | \- smc_lgr_register_conn for conn in lgr->conns_all | \- smc_conn_kill | \- smc_close_active_abort | \- smc_close_cancel_work | \- cancel_work_sync | \- __flush_work | (close_work) | | smc_close_init | \- INIT_WORK(&close_work) So fix this by initializing close_work before establishing the connection. | |||||
| CVE-2024-42125 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fw: scan offload prohibit all 6 GHz channel if no 6 GHz sband We have some policy via BIOS to block uses of 6 GHz. In this case, 6 GHz sband will be NULL even if it is WiFi 7 chip. So, add NULL handling here to avoid crash. | |||||
| CVE-2022-48818 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: mv88e6xxx: don't use devres for mdiobus As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The mv88e6xxx is an MDIO device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the Marvell switch driver on shutdown. systemd-shutdown[1]: Powering off. mv88e6085 0x0000000008b96000:00 sw_gl0: Link is Down fsl-mc dpbp.9: Removing from iommu group 7 fsl-mc dpbp.8: Removing from iommu group 7 ------------[ cut here ]------------ kernel BUG at drivers/net/phy/mdio_bus.c:677! Internal error: Oops - BUG: 0 [#1] PREEMPT SMP Modules linked in: CPU: 0 PID: 1 Comm: systemd-shutdow Not tainted 5.16.5-00040-gdc05f73788e5 #15 pc : mdiobus_free+0x44/0x50 lr : devm_mdiobus_free+0x10/0x20 Call trace: mdiobus_free+0x44/0x50 devm_mdiobus_free+0x10/0x20 devres_release_all+0xa0/0x100 __device_release_driver+0x190/0x220 device_release_driver_internal+0xac/0xb0 device_links_unbind_consumers+0xd4/0x100 __device_release_driver+0x4c/0x220 device_release_driver_internal+0xac/0xb0 device_links_unbind_consumers+0xd4/0x100 __device_release_driver+0x94/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_device_remove+0x24/0x40 __fsl_mc_device_remove+0xc/0x20 device_for_each_child+0x58/0xa0 dprc_remove+0x90/0xb0 fsl_mc_driver_remove+0x20/0x5c __device_release_driver+0x21c/0x220 device_release_driver+0x28/0x40 bus_remove_device+0x118/0x124 device_del+0x174/0x420 fsl_mc_bus_remove+0x80/0x100 fsl_mc_bus_shutdown+0xc/0x1c platform_shutdown+0x20/0x30 device_shutdown+0x154/0x330 kernel_power_off+0x34/0x6c __do_sys_reboot+0x15c/0x250 __arm64_sys_reboot+0x20/0x30 invoke_syscall.constprop.0+0x4c/0xe0 do_el0_svc+0x4c/0x150 el0_svc+0x24/0xb0 el0t_64_sync_handler+0xa8/0xb0 el0t_64_sync+0x178/0x17c So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The Marvell driver already has a good structure for mdiobus removal, so just plug in mdiobus_free and get rid of devres. | |||||
| CVE-2022-48817 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: ar9331: register the mdiobus under devres As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The ar9331 is an MDIO device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the ar9331 switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The ar9331 driver doesn't have a complex code structure for mdiobus removal, so just replace of_mdiobus_register with the devres variant in order to be all-devres and ensure that we don't free a still-registered bus. | |||||
| CVE-2022-48816 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 4.7 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: SUNRPC: lock against ->sock changing during sysfs read ->sock can be set to NULL asynchronously unless ->recv_mutex is held. So it is important to hold that mutex. Otherwise a sysfs read can trigger an oops. Commit 17f09d3f619a ("SUNRPC: Check if the xprt is connected before handling sysfs reads") appears to attempt to fix this problem, but it only narrows the race window. | |||||
| CVE-2022-48815 | 1 Linux | 1 Linux Kernel | 2025-10-06 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: bcm_sf2: don't use devres for mdiobus As explained in commits: 74b6d7d13307 ("net: dsa: realtek: register the MDIO bus under devres") 5135e96a3dd2 ("net: dsa: don't allocate the slave_mii_bus using devres") mdiobus_free() will panic when called from devm_mdiobus_free() <- devres_release_all() <- __device_release_driver(), and that mdiobus was not previously unregistered. The Starfighter 2 is a platform device, so the initial set of constraints that I thought would cause this (I2C or SPI buses which call ->remove on ->shutdown) do not apply. But there is one more which applies here. If the DSA master itself is on a bus that calls ->remove from ->shutdown (like dpaa2-eth, which is on the fsl-mc bus), there is a device link between the switch and the DSA master, and device_links_unbind_consumers() will unbind the bcm_sf2 switch driver on shutdown. So the same treatment must be applied to all DSA switch drivers, which is: either use devres for both the mdiobus allocation and registration, or don't use devres at all. The bcm_sf2 driver has the code structure in place for orderly mdiobus removal, so just replace devm_mdiobus_alloc() with the non-devres variant, and add manual free where necessary, to ensure that we don't let devres free a still-registered bus. | |||||
| CVE-2025-23248 | 3 Linux, Microsoft, Nvidia | 3 Linux Kernel, Windows, Cuda Toolkit | 2025-10-06 | N/A | 3.3 LOW |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in the nvdisasm binary where a user may cause an out-of-bounds read by passing a malformed ELF file to nvdisasm. A successful exploit of this vulnerability may lead to a partial denial of service. | |||||
| CVE-2025-23273 | 3 Linux, Microsoft, Nvidia | 6 Linux Kernel, Windows, Cuda Toolkit and 3 more | 2025-10-06 | N/A | 2.5 LOW |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a divide by zero error by submitting a specially crafted JPEG file. A successful exploit of this vulnerability may lead to denial of service. | |||||
| CVE-2025-23275 | 3 Linux, Microsoft, Nvidia | 6 Linux Kernel, Windows, Cuda Toolkit and 3 more | 2025-10-06 | N/A | 4.2 MEDIUM |
| NVIDIA CUDA Toolkit for all platforms contains a vulnerability in nvJPEG where a local authenticated user may cause a GPU out-of-bounds write by providing certain image dimensions. A successful exploit of this vulnerability may lead to denial of service and information disclosure. | |||||
| CVE-2025-23346 | 3 Linux, Microsoft, Nvidia | 3 Linux Kernel, Windows, Cuda Toolkit | 2025-10-06 | N/A | 3.3 LOW |
| NVIDIA CUDA Toolkit contains a vulnerability in cuobjdump, where an unprivileged user can cause a NULL pointer dereference. A successful exploit of this vulnerability may lead to a limited denial of service. | |||||
| CVE-2024-0137 | 2 Linux, Nvidia | 3 Linux Kernel, Nvidia Container Toolkit, Nvidia Gpu Operator | 2025-10-06 | N/A | 5.5 MEDIUM |
| NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code running in the host’s network namespace. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to denial of service and escalation of privileges. | |||||
| CVE-2024-0136 | 2 Linux, Nvidia | 3 Linux Kernel, Nvidia Container Toolkit, Nvidia Gpu Operator | 2025-10-06 | N/A | 7.6 HIGH |
| NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to untrusted code obtaining read and write access to host devices. This vulnerability is present only when the NVIDIA Container Toolkit is configured in a nondefault way. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. | |||||
| CVE-2024-0135 | 2 Linux, Nvidia | 3 Linux Kernel, Nvidia Container Toolkit, Nvidia Gpu Operator | 2025-10-06 | N/A | 7.6 HIGH |
| NVIDIA Container Toolkit contains an improper isolation vulnerability where a specially crafted container image could lead to modification of a host binary. A successful exploit of this vulnerability may lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering. | |||||
| CVE-2024-42260 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Validate passed in drm syncobj handles in the performance extension If userspace provides an unknown or invalid handle anywhere in the handle array the rest of the driver will not handle that well. Fix it by checking handle was looked up successfully or otherwise fail the extension by jumping into the existing unwind. (cherry picked from commit a546b7e4d73c23838d7e4d2c92882b3ca902d213) | |||||
| CVE-2024-42261 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Validate passed in drm syncobj handles in the timestamp extension If userspace provides an unknown or invalid handle anywhere in the handle array the rest of the driver will not handle that well. Fix it by checking handle was looked up successfully or otherwise fail the extension by jumping into the existing unwind. (cherry picked from commit 8d1276d1b8f738c3afe1457d4dff5cc66fc848a3) | |||||
| CVE-2024-38620 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: HCI: Remove HCI_AMP support Since BT_HS has been remove HCI_AMP controllers no longer has any use so remove it along with the capability of creating AMP controllers. Since we no longer need to differentiate between AMP and Primary controllers, as only HCI_PRIMARY is left, this also remove hdev->dev_type altogether. | |||||
| CVE-2024-38624 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Use 64 bit variable to avoid 32 bit overflow For example, in the expression: vbo = 2 * vbo + skip | |||||
| CVE-2024-38617 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: kunit/fortify: Fix mismatched kvalloc()/vfree() usage The kv*() family of tests were accidentally freeing with vfree() instead of kvfree(). Use kvfree() instead. | |||||
| CVE-2024-38615 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: cpufreq: exit() callback is optional The exit() callback is optional and shouldn't be called without checking a valid pointer first. Also, we must clear freq_table pointer even if the exit() callback isn't present. | |||||
| CVE-2024-38614 | 1 Linux | 1 Linux Kernel | 2025-10-03 | N/A | 5.5 MEDIUM |
| In the Linux kernel, the following vulnerability has been resolved: openrisc: traps: Don't send signals to kernel mode threads OpenRISC exception handling sends signals to user processes on floating point exceptions and trap instructions (for debugging) among others. There is a bug where the trap handling logic may send signals to kernel threads, we should not send these signals to kernel threads, if that happens we treat it as an error. This patch adds conditions to die if the kernel receives these exceptions in kernel mode code. | |||||
