Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Total 15170 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2021-47387 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: cpufreq: schedutil: Use kobject release() method to free sugov_tunables The struct sugov_tunables is protected by the kobject, so we can't free it directly. Otherwise we would get a call trace like this: ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30 WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100 Modules linked in: CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507 Hardware name: Marvell OcteonTX CN96XX board (DT) pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=--) pc : debug_print_object+0xb8/0x100 lr : debug_print_object+0xb8/0x100 sp : ffff80001ecaf910 x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80 x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000 x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20 x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010 x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365 x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69 x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0 x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001 x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000 x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000 Call trace: debug_print_object+0xb8/0x100 __debug_check_no_obj_freed+0x1c0/0x230 debug_check_no_obj_freed+0x20/0x88 slab_free_freelist_hook+0x154/0x1c8 kfree+0x114/0x5d0 sugov_exit+0xbc/0xc0 cpufreq_exit_governor+0x44/0x90 cpufreq_set_policy+0x268/0x4a8 store_scaling_governor+0xe0/0x128 store+0xc0/0xf0 sysfs_kf_write+0x54/0x80 kernfs_fop_write_iter+0x128/0x1c0 new_sync_write+0xf0/0x190 vfs_write+0x2d4/0x478 ksys_write+0x74/0x100 __arm64_sys_write+0x24/0x30 invoke_syscall.constprop.0+0x54/0xe0 do_el0_svc+0x64/0x158 el0_svc+0x2c/0xb0 el0t_64_sync_handler+0xb0/0xb8 el0t_64_sync+0x198/0x19c irq event stamp: 5518 hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8 hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0 softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0 softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8 So split the original sugov_tunables_free() into two functions, sugov_clear_global_tunables() is just used to clear the global_tunables and the new sugov_tunables_free() is used as kobj_type::release to release the sugov_tunables safely.
CVE-2021-47395 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mac80211: limit injected vht mcs/nss in ieee80211_parse_tx_radiotap Limit max values for vht mcs and nss in ieee80211_parse_tx_radiotap routine in order to fix the following warning reported by syzbot: WARNING: CPU: 0 PID: 10717 at include/net/mac80211.h:989 ieee80211_rate_set_vht include/net/mac80211.h:989 [inline] WARNING: CPU: 0 PID: 10717 at include/net/mac80211.h:989 ieee80211_parse_tx_radiotap+0x101e/0x12d0 net/mac80211/tx.c:2244 Modules linked in: CPU: 0 PID: 10717 Comm: syz-executor.5 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:ieee80211_rate_set_vht include/net/mac80211.h:989 [inline] RIP: 0010:ieee80211_parse_tx_radiotap+0x101e/0x12d0 net/mac80211/tx.c:2244 RSP: 0018:ffffc9000186f3e8 EFLAGS: 00010216 RAX: 0000000000000618 RBX: ffff88804ef76500 RCX: ffffc900143a5000 RDX: 0000000000040000 RSI: ffffffff888f478e RDI: 0000000000000003 RBP: 00000000ffffffff R08: 0000000000000000 R09: 0000000000000100 R10: ffffffff888f46f9 R11: 0000000000000000 R12: 00000000fffffff8 R13: ffff88804ef7653c R14: 0000000000000001 R15: 0000000000000004 FS: 00007fbf5718f700(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b2de23000 CR3: 000000006a671000 CR4: 00000000001506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600 Call Trace: ieee80211_monitor_select_queue+0xa6/0x250 net/mac80211/iface.c:740 netdev_core_pick_tx+0x169/0x2e0 net/core/dev.c:4089 __dev_queue_xmit+0x6f9/0x3710 net/core/dev.c:4165 __bpf_tx_skb net/core/filter.c:2114 [inline] __bpf_redirect_no_mac net/core/filter.c:2139 [inline] __bpf_redirect+0x5ba/0xd20 net/core/filter.c:2162 ____bpf_clone_redirect net/core/filter.c:2429 [inline] bpf_clone_redirect+0x2ae/0x420 net/core/filter.c:2401 bpf_prog_eeb6f53a69e5c6a2+0x59/0x234 bpf_dispatcher_nop_func include/linux/bpf.h:717 [inline] __bpf_prog_run include/linux/filter.h:624 [inline] bpf_prog_run include/linux/filter.h:631 [inline] bpf_test_run+0x381/0xa30 net/bpf/test_run.c:119 bpf_prog_test_run_skb+0xb84/0x1ee0 net/bpf/test_run.c:663 bpf_prog_test_run kernel/bpf/syscall.c:3307 [inline] __sys_bpf+0x2137/0x5df0 kernel/bpf/syscall.c:4605 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline] __se_sys_bpf kernel/bpf/syscall.c:4689 [inline] __x64_sys_bpf+0x75/0xb0 kernel/bpf/syscall.c:4689 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x4665f9
CVE-2021-47396 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mac80211-hwsim: fix late beacon hrtimer handling Thomas explained in https://lore.kernel.org/r/87mtoeb4hb.ffs@tglx that our handling of the hrtimer here is wrong: If the timer fires late (e.g. due to vCPU scheduling, as reported by Dmitry/syzbot) then it tries to actually rearm the timer at the next deadline, which might be in the past already: 1 2 3 N N+1 | | | ... | | ^ intended to fire here (1) ^ next deadline here (2) ^ actually fired here The next time it fires, it's later, but will still try to schedule for the next deadline (now 3), etc. until it catches up with N, but that might take a long time, causing stalls etc. Now, all of this is simulation, so we just have to fix it, but note that the behaviour is wrong even per spec, since there's no value then in sending all those beacons unaligned - they should be aligned to the TBTT (1, 2, 3, ... in the picture), and if we're a bit (or a lot) late, then just resume at that point. Therefore, change the code to use hrtimer_forward_now() which will ensure that the next firing of the timer would be at N+1 (in the picture), i.e. the next interval point after the current time.
CVE-2021-47400 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net: hns3: do not allow call hns3_nic_net_open repeatedly hns3_nic_net_open() is not allowed to called repeatly, but there is no checking for this. When doing device reset and setup tc concurrently, there is a small oppotunity to call hns3_nic_net_open repeatedly, and cause kernel bug by calling napi_enable twice. The calltrace information is like below: [ 3078.222780] ------------[ cut here ]------------ [ 3078.230255] kernel BUG at net/core/dev.c:6991! [ 3078.236224] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP [ 3078.243431] Modules linked in: hns3 hclgevf hclge hnae3 vfio_iommu_type1 vfio_pci vfio_virqfd vfio pv680_mii(O) [ 3078.258880] CPU: 0 PID: 295 Comm: kworker/u8:5 Tainted: G O 5.14.0-rc4+ #1 [ 3078.269102] Hardware name: , BIOS KpxxxFPGA 1P B600 V181 08/12/2021 [ 3078.276801] Workqueue: hclge hclge_service_task [hclge] [ 3078.288774] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--) [ 3078.296168] pc : napi_enable+0x80/0x84 tc qdisc sho[w 3d0e7v8 .e3t0h218 79] lr : hns3_nic_net_open+0x138/0x510 [hns3] [ 3078.314771] sp : ffff8000108abb20 [ 3078.319099] x29: ffff8000108abb20 x28: 0000000000000000 x27: ffff0820a8490300 [ 3078.329121] x26: 0000000000000001 x25: ffff08209cfc6200 x24: 0000000000000000 [ 3078.339044] x23: ffff0820a8490300 x22: ffff08209cd76000 x21: ffff0820abfe3880 [ 3078.349018] x20: 0000000000000000 x19: ffff08209cd76900 x18: 0000000000000000 [ 3078.358620] x17: 0000000000000000 x16: ffffc816e1727a50 x15: 0000ffff8f4ff930 [ 3078.368895] x14: 0000000000000000 x13: 0000000000000000 x12: 0000259e9dbeb6b4 [ 3078.377987] x11: 0096a8f7e764eb40 x10: 634615ad28d3eab5 x9 : ffffc816ad8885b8 [ 3078.387091] x8 : ffff08209cfc6fb8 x7 : ffff0820ac0da058 x6 : ffff0820a8490344 [ 3078.396356] x5 : 0000000000000140 x4 : 0000000000000003 x3 : ffff08209cd76938 [ 3078.405365] x2 : 0000000000000000 x1 : 0000000000000010 x0 : ffff0820abfe38a0 [ 3078.414657] Call trace: [ 3078.418517] napi_enable+0x80/0x84 [ 3078.424626] hns3_reset_notify_up_enet+0x78/0xd0 [hns3] [ 3078.433469] hns3_reset_notify+0x64/0x80 [hns3] [ 3078.441430] hclge_notify_client+0x68/0xb0 [hclge] [ 3078.450511] hclge_reset_rebuild+0x524/0x884 [hclge] [ 3078.458879] hclge_reset_service_task+0x3c4/0x680 [hclge] [ 3078.467470] hclge_service_task+0xb0/0xb54 [hclge] [ 3078.475675] process_one_work+0x1dc/0x48c [ 3078.481888] worker_thread+0x15c/0x464 [ 3078.487104] kthread+0x160/0x170 [ 3078.492479] ret_from_fork+0x10/0x18 [ 3078.498785] Code: c8027c81 35ffffa2 d50323bf d65f03c0 (d4210000) [ 3078.506889] ---[ end trace 8ebe0340a1b0fb44 ]--- Once hns3_nic_net_open() is excute success, the flag HNS3_NIC_STATE_DOWN will be cleared. So add checking for this flag, directly return when HNS3_NIC_STATE_DOWN is no set.
CVE-2021-47408 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: conntrack: serialize hash resizes and cleanups Syzbot was able to trigger the following warning [1] No repro found by syzbot yet but I was able to trigger similar issue by having 2 scripts running in parallel, changing conntrack hash sizes, and: for j in `seq 1 1000` ; do unshare -n /bin/true >/dev/null ; done It would take more than 5 minutes for net_namespace structures to be cleaned up. This is because nf_ct_iterate_cleanup() has to restart everytime a resize happened. By adding a mutex, we can serialize hash resizes and cleanups and also make get_next_corpse() faster by skipping over empty buckets. Even without resizes in the picture, this patch considerably speeds up network namespace dismantles. [1] INFO: task syz-executor.0:8312 can't die for more than 144 seconds. task:syz-executor.0 state:R running task stack:25672 pid: 8312 ppid: 6573 flags:0x00004006 Call Trace: context_switch kernel/sched/core.c:4955 [inline] __schedule+0x940/0x26f0 kernel/sched/core.c:6236 preempt_schedule_common+0x45/0xc0 kernel/sched/core.c:6408 preempt_schedule_thunk+0x16/0x18 arch/x86/entry/thunk_64.S:35 __local_bh_enable_ip+0x109/0x120 kernel/softirq.c:390 local_bh_enable include/linux/bottom_half.h:32 [inline] get_next_corpse net/netfilter/nf_conntrack_core.c:2252 [inline] nf_ct_iterate_cleanup+0x15a/0x450 net/netfilter/nf_conntrack_core.c:2275 nf_conntrack_cleanup_net_list+0x14c/0x4f0 net/netfilter/nf_conntrack_core.c:2469 ops_exit_list+0x10d/0x160 net/core/net_namespace.c:171 setup_net+0x639/0xa30 net/core/net_namespace.c:349 copy_net_ns+0x319/0x760 net/core/net_namespace.c:470 create_new_namespaces+0x3f6/0xb20 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0xc1/0x1f0 kernel/nsproxy.c:226 ksys_unshare+0x445/0x920 kernel/fork.c:3128 __do_sys_unshare kernel/fork.c:3202 [inline] __se_sys_unshare kernel/fork.c:3200 [inline] __x64_sys_unshare+0x2d/0x40 kernel/fork.c:3200 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7f63da68e739 RSP: 002b:00007f63d7c05188 EFLAGS: 00000246 ORIG_RAX: 0000000000000110 RAX: ffffffffffffffda RBX: 00007f63da792f80 RCX: 00007f63da68e739 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000040000000 RBP: 00007f63da6e8cc4 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f63da792f80 R13: 00007fff50b75d3f R14: 00007f63d7c05300 R15: 0000000000022000 Showing all locks held in the system: 1 lock held by khungtaskd/27: #0: ffffffff8b980020 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x53/0x260 kernel/locking/lockdep.c:6446 2 locks held by kworker/u4:2/153: #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: arch_atomic_long_set include/linux/atomic/atomic-long.h:41 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: atomic_long_set include/linux/atomic/atomic-instrumented.h:1198 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_data kernel/workqueue.c:634 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: set_work_pool_and_clear_pending kernel/workqueue.c:661 [inline] #0: ffff888010c69138 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x896/0x1690 kernel/workqueue.c:2268 #1: ffffc9000140fdb0 ((kfence_timer).work){+.+.}-{0:0}, at: process_one_work+0x8ca/0x1690 kernel/workqueue.c:2272 1 lock held by systemd-udevd/2970: 1 lock held by in:imklog/6258: #0: ffff88807f970ff0 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0xe9/0x100 fs/file.c:990 3 locks held by kworker/1:6/8158: 1 lock held by syz-executor.0/8312: 2 locks held by kworker/u4:13/9320: 1 lock held by ---truncated---
CVE-2021-47410 1 Linux 1 Linux Kernel 2025-09-25 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: fix svm_migrate_fini warning Device manager releases device-specific resources when a driver disconnects from a device, devm_memunmap_pages and devm_release_mem_region calls in svm_migrate_fini are redundant. It causes below warning trace after patch "drm/amdgpu: Split amdgpu_device_fini into early and late", so remove function svm_migrate_fini. BUG: https://gitlab.freedesktop.org/drm/amd/-/issues/1718 WARNING: CPU: 1 PID: 3646 at drivers/base/devres.c:795 devm_release_action+0x51/0x60 Call Trace: ? memunmap_pages+0x360/0x360 svm_migrate_fini+0x2d/0x60 [amdgpu] kgd2kfd_device_exit+0x23/0xa0 [amdgpu] amdgpu_amdkfd_device_fini_sw+0x1d/0x30 [amdgpu] amdgpu_device_fini_sw+0x45/0x290 [amdgpu] amdgpu_driver_release_kms+0x12/0x30 [amdgpu] drm_dev_release+0x20/0x40 [drm] release_nodes+0x196/0x1e0 device_release_driver_internal+0x104/0x1d0 driver_detach+0x47/0x90 bus_remove_driver+0x7a/0xd0 pci_unregister_driver+0x3d/0x90 amdgpu_exit+0x11/0x20 [amdgpu]
CVE-2025-23359 2 Linux, Nvidia 3 Linux Kernel, Nvidia Container Toolkit, Nvidia Gpu Operator 2025-09-25 N/A 8.3 HIGH
NVIDIA Container Toolkit for Linux contains a Time-of-Check Time-of-Use (TOCTOU) vulnerability when used with default configuration, where a crafted container image could gain access to the host file system. A successful exploit of this vulnerability might lead to code execution, denial of service, escalation of privileges, information disclosure, and data tampering.
CVE-2024-35872 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mm/secretmem: fix GUP-fast succeeding on secretmem folios folio_is_secretmem() currently relies on secretmem folios being LRU folios, to save some cycles. However, folios might reside in a folio batch without the LRU flag set, or temporarily have their LRU flag cleared. Consequently, the LRU flag is unreliable for this purpose. In particular, this is the case when secretmem_fault() allocates a fresh page and calls filemap_add_folio()->folio_add_lru(). The folio might be added to the per-cpu folio batch and won't get the LRU flag set until the batch was drained using e.g., lru_add_drain(). Consequently, folio_is_secretmem() might not detect secretmem folios and GUP-fast can succeed in grabbing a secretmem folio, crashing the kernel when we would later try reading/writing to the folio, because the folio has been unmapped from the directmap. Fix it by removing that unreliable check.
CVE-2024-35873 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: riscv: Fix vector state restore in rt_sigreturn() The RISC-V Vector specification states in "Appendix D: Calling Convention for Vector State" [1] that "Executing a system call causes all caller-saved vector registers (v0-v31, vl, vtype) and vstart to become unspecified.". In the RISC-V kernel this is called "discarding the vstate". Returning from a signal handler via the rt_sigreturn() syscall, vector discard is also performed. However, this is not an issue since the vector state should be restored from the sigcontext, and therefore not care about the vector discard. The "live state" is the actual vector register in the running context, and the "vstate" is the vector state of the task. A dirty live state, means that the vstate and live state are not in synch. When vectorized user_from_copy() was introduced, an bug sneaked in at the restoration code, related to the discard of the live state. An example when this go wrong: 1. A userland application is executing vector code 2. The application receives a signal, and the signal handler is entered. 3. The application returns from the signal handler, using the rt_sigreturn() syscall. 4. The live vector state is discarded upon entering the rt_sigreturn(), and the live state is marked as "dirty", indicating that the live state need to be synchronized with the current vstate. 5. rt_sigreturn() restores the vstate, except the Vector registers, from the sigcontext 6. rt_sigreturn() restores the Vector registers, from the sigcontext, and now the vectorized user_from_copy() is used. The dirty live state from the discard is saved to the vstate, making the vstate corrupt. 7. rt_sigreturn() returns to the application, which crashes due to corrupted vstate. Note that the vectorized user_from_copy() is invoked depending on the value of CONFIG_RISCV_ISA_V_UCOPY_THRESHOLD. Default is 768, which means that vlen has to be larger than 128b for this bug to trigger. The fix is simply to mark the live state as non-dirty/clean prior performing the vstate restore.
CVE-2024-35875 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/coco: Require seeding RNG with RDRAND on CoCo systems There are few uses of CoCo that don't rely on working cryptography and hence a working RNG. Unfortunately, the CoCo threat model means that the VM host cannot be trusted and may actively work against guests to extract secrets or manipulate computation. Since a malicious host can modify or observe nearly all inputs to guests, the only remaining source of entropy for CoCo guests is RDRAND. If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole is meant to gracefully continue on gathering entropy from other sources, but since there aren't other sources on CoCo, this is catastrophic. This is mostly a concern at boot time when initially seeding the RNG, as after that the consequences of a broken RDRAND are much more theoretical. So, try at boot to seed the RNG using 256 bits of RDRAND output. If this fails, panic(). This will also trigger if the system is booted without RDRAND, as RDRAND is essential for a safe CoCo boot. Add this deliberately to be "just a CoCo x86 driver feature" and not part of the RNG itself. Many device drivers and platforms have some desire to contribute something to the RNG, and add_device_randomness() is specifically meant for this purpose. Any driver can call it with seed data of any quality, or even garbage quality, and it can only possibly make the quality of the RNG better or have no effect, but can never make it worse. Rather than trying to build something into the core of the RNG, consider the particular CoCo issue just a CoCo issue, and therefore separate it all out into driver (well, arch/platform) code. [ bp: Massage commit message. ]
CVE-2024-35880 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: io_uring/kbuf: hold io_buffer_list reference over mmap If we look up the kbuf, ensure that it doesn't get unregistered until after we're done with it. Since we're inside mmap, we cannot safely use the io_uring lock. Rely on the fact that we can lookup the buffer list under RCU now and grab a reference to it, preventing it from being unregistered until we're done with it. The lookup returns the io_buffer_list directly with it referenced.
CVE-2024-35890 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: gro: fix ownership transfer If packets are GROed with fraglist they might be segmented later on and continue their journey in the stack. In skb_segment_list those skbs can be reused as-is. This is an issue as their destructor was removed in skb_gro_receive_list but not the reference to their socket, and then they can't be orphaned. Fix this by also removing the reference to the socket. For example this could be observed, kernel BUG at include/linux/skbuff.h:3131! (skb_orphan) RIP: 0010:ip6_rcv_core+0x11bc/0x19a0 Call Trace: ipv6_list_rcv+0x250/0x3f0 __netif_receive_skb_list_core+0x49d/0x8f0 netif_receive_skb_list_internal+0x634/0xd40 napi_complete_done+0x1d2/0x7d0 gro_cell_poll+0x118/0x1f0 A similar construction is found in skb_gro_receive, apply the same change there.
CVE-2024-35903 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: x86/bpf: Fix IP after emitting call depth accounting Adjust the IP passed to `emit_patch` so it calculates the correct offset for the CALL instruction if `x86_call_depth_emit_accounting` emits code. Otherwise we will skip some instructions and most likely crash.
CVE-2024-35832 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut. It should be freed by kvfree not kfree. Or umount will triger: [ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008 [ 406.830676 ] #PF: supervisor read access in kernel mode [ 406.831643 ] #PF: error_code(0x0000) - not-present page [ 406.832487 ] PGD 0 P4D 0 [ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI [ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90 [ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 406.835796 ] RIP: 0010:kfree+0x62/0x140 [ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6 [ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286 [ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4 [ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000 [ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001 [ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80 [ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000 [ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000 [ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0 [ 406.841464 ] Call Trace: [ 406.841583 ] <TASK> [ 406.841682 ] ? __die+0x1f/0x70 [ 406.841828 ] ? page_fault_oops+0x159/0x470 [ 406.842014 ] ? fixup_exception+0x22/0x310 [ 406.842198 ] ? exc_page_fault+0x1ed/0x200 [ 406.842382 ] ? asm_exc_page_fault+0x22/0x30 [ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs] [ 406.842842 ] ? kfree+0x62/0x140 [ 406.842988 ] ? kfree+0x104/0x140 [ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs] [ 406.843390 ] kobject_put+0xb7/0x170 [ 406.843552 ] deactivate_locked_super+0x2f/0xa0 [ 406.843756 ] cleanup_mnt+0xba/0x150 [ 406.843917 ] task_work_run+0x59/0xa0 [ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0 [ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40 [ 406.844510 ] do_syscall_64+0x4e/0xf0 [ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 406.844907 ] RIP: 0033:0x7f0a2664e4fb
CVE-2024-35839 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: netfilter: bridge: replace physindev with physinif in nf_bridge_info An skb can be added to a neigh->arp_queue while waiting for an arp reply. Where original skb's skb->dev can be different to neigh's neigh->dev. For instance in case of bridging dnated skb from one veth to another, the skb would be added to a neigh->arp_queue of the bridge. As skb->dev can be reset back to nf_bridge->physindev and used, and as there is no explicit mechanism that prevents this physindev from been freed under us (for instance neigh_flush_dev doesn't cleanup skbs from different device's neigh queue) we can crash on e.g. this stack: arp_process neigh_update skb = __skb_dequeue(&neigh->arp_queue) neigh_resolve_output(..., skb) ... br_nf_dev_xmit br_nf_pre_routing_finish_bridge_slow skb->dev = nf_bridge->physindev br_handle_frame_finish Let's use plain ifindex instead of net_device link. To peek into the original net_device we will use dev_get_by_index_rcu(). Thus either we get device and are safe to use it or we don't get it and drop skb.
CVE-2024-35840 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mptcp: use OPTION_MPTCP_MPJ_SYNACK in subflow_finish_connect() subflow_finish_connect() uses four fields (backup, join_id, thmac, none) that may contain garbage unless OPTION_MPTCP_MPJ_SYNACK has been set in mptcp_parse_option()
CVE-2024-35939 1 Linux 1 Linux Kernel 2025-09-24 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: dma-direct: Leak pages on dma_set_decrypted() failure On TDX it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. DMA could free decrypted/shared pages if dma_set_decrypted() fails. This should be a rare case. Just leak the pages in this case instead of freeing them.
CVE-2021-47527 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: serial: core: fix transmit-buffer reset and memleak Commit 761ed4a94582 ("tty: serial_core: convert uart_close to use tty_port_close") converted serial core to use tty_port_close() but failed to notice that the transmit buffer still needs to be freed on final close. Not freeing the transmit buffer means that the buffer is no longer cleared on next open so that any ioctl() waiting for the buffer to drain might wait indefinitely (e.g. on termios changes) or that stale data can end up being transmitted in case tx is restarted. Furthermore, the buffer of any port that has been opened would leak on driver unbind. Note that the port lock is held when clearing the buffer pointer due to the ldisc race worked around by commit a5ba1d95e46e ("uart: fix race between uart_put_char() and uart_shutdown()"). Also note that the tty-port shutdown() callback is not called for console ports so it is not strictly necessary to free the buffer page after releasing the lock (cf. d72402145ace ("tty/serial: do not free trasnmit buffer page under port lock")).
CVE-2021-47524 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: serial: liteuart: fix minor-number leak on probe errors Make sure to release the allocated minor number before returning on probe errors.
CVE-2021-47523 1 Linux 1 Linux Kernel 2025-09-24 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: IB/hfi1: Fix leak of rcvhdrtail_dummy_kvaddr This buffer is currently allocated in hfi1_init(): if (reinit) ret = init_after_reset(dd); else ret = loadtime_init(dd); if (ret) goto done; /* allocate dummy tail memory for all receive contexts */ dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev, sizeof(u64), &dd->rcvhdrtail_dummy_dma, GFP_KERNEL); if (!dd->rcvhdrtail_dummy_kvaddr) { dd_dev_err(dd, "cannot allocate dummy tail memory\n"); ret = -ENOMEM; goto done; } The reinit triggered path will overwrite the old allocation and leak it. Fix by moving the allocation to hfi1_alloc_devdata() and the deallocation to hfi1_free_devdata().